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ABSTRACT

Polydeoxyribonucleotide (PDRN) has emerged as a biologically active nucleic-acid therapeutic with broad applications in
dermatology, regenerative medicine, and tissue repair. Although its clinical utility has been recognized across diverse ROS-driven
pathological conditions, the underlying molecular signaling mechanisms have remained fragmented. This review integrates and
systematizes current findings to reconstruct PDRN’s signaling network within a hierarchical, multilayered framework. Evidence
from existing studies indicates that PDRN-mediated activation of the A2A adenosine receptor initiates a coordinated cascade
involving cAMP-PKA signaling, MAPK modulation, PI3K-Akt activation, NF-kB suppression, MITF inhibition, and HIF-1a
regulation. These pathways collectively converge on the upstream suppression of ROS generated through mitochondrial
dysfunction, NOX activation, UV-induced MAPK signaling, and melanogenesis-associated oxidative reactions. Beyond its
anti-inflammatory and pro-regenerative properties, PDRN reprograms multiple transcriptional regulators—including CREB, NF-kB,
MITF, and HIF-la—thereby influencing ECM homeostasis, cytokine balance, apoptosis resistance, angiogenesis, and
pigmentation. Taken together, current evidence positions PDRN not as a classical antioxidant but as an upstream network
regulator that mitigates ROS-driven cellular damage and restores tissue homeostasis. This mechanistic framework provides a
rationale for its therapeutic potential in photoaging, wound healing, pigmentary disorders, and ischemic injury, while highlighting
future research opportunities involving Nrf2 signaling, NOX isoform specificity, and mitochondrial dynamics.
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1. A9l 7|t =k

A 71 wo] A== PDRN-S $10Y(Oncorhynchus mykiss,
O. keta) 2=04 ET]3 DNAS & A9} A A
HAE B3l GRS, 5). AR HAZo= g A
2AZRE SR 1 ri15). FAE PDRNLS 95% ©]/d9]
TEE JHAH, OiREe] g, HEfo| &, A do] AA"ETT
(1, 16). ©]23 1= SHL F 7HA oHE 7RIt AA,
HRRE-o] Haslolt}, Tl ) o] A AH upet &
RS 9 A EY] §he-E SHOE ¥E  JATHL1T). F
HARE A 7k ASHGE 2= AAEA S 7|5 Adoltt
(18). DNA fragment= AX Y HAME 53 nucleotide

salvage pathway©oll AH&-2 &+ 1S 9 ofYzh4), AlE =
HoA ot Al % S7HE QI%F A2A FEAE AT
A Az W gt A5 7)1dE FERTks, 13).

2. A2A %8%: PDRN 7|M2| A|ZHH

A2A F83= G-protein-coupled receptor(GPCR)®l 43
™ Gs @A AdE] QTH19). PDRN 713 Aol A
A2A receptore= Tgh ¢ o] olYzt HA| networkE A
d3h= “central hub”= & <= Ut PDRN #2]ol] ofsf A2A

TEA7 S43EH Gs Ddo] adenylyl cyclase(AC)E
g4 3}5}4] cyclic adenosine monophosphate(cAMP) &7} —
protein kinase A(PKA) — cAMP response element-binding
protein(CREB) 14}+8}9] cascade”} A2 TH20-22). @A)7F
A 2% ZSAvFS 2= PDRNO| A2 A2A agonist?]
A &2 DNA Ea3fo] @& ol $% S717F wist=
A g3l Ael el =o7F B R eA|TH?23), T
o] AFdA A2A FEA 3,7-dimethyl-1-
propargylxanthine(DMPX) £ A] PDRNS| &3/} 743
< WS E(5,8), A2A7F PDRN 714 2] a4 2] A=zl

antagonist]

3. PDRNOf| 2fe ZRE= MZE MSTE F=2

PDRNE A2A F&AHE B3 cAMP 718 L OE,
t}eF3t kinase 2 signaling cascade® A3t A o2 ¢H
A ATk(13, 21). 53] AFAHE(AfFOAE - AlTE mALo]
E . "depiAlo] E), HAA|Z, YWIAE 5 AR GE AX
BAA 7] 2 Asdg UEHIE vAMSHA 243
o= Aol F83% 54 o]th(24-26)(Table 1).

1) cAMP-PKA 7 Z: PDRN AZ9] A9 4z

A2A B3l = S4AH 0 E cAMP 3-8 535, PKA
2435 53] CREB U4HsE S7MAZIEH21, 22). 53],
CREB+= A X AIE 34 {-3RKBcl-2, survivin), ECM 74 &
Acollagen 1L, elastin), “878-R1A(CTGF, bFGF) ¥ the¥st o
A HE RS AHA R F7HA]71E master transcription
regulator®]tH27, 28). UVBY ROS+= CREB 7|52 AS}A]|
7 ECM #3l1¢} apoptosisE  S57HA171=H(29), PDRN<
CREBY] Q14tslE B30 24 photodamage s ¢H3lA 7]+
Z29 752 7K1, 30).

2) MAPK(ERK, JNK, p38)

of2] Al 2o A PDRN- ERK1/2 Q14HstE
o, ol= ARl E S, A9 X, S §E d
Hrh2, 31). ¥k INK o} p38°ﬂ et 9Fe ZERE ol
i, 3d= A AME A4 HFo g AFsE= Bl
A1, 32). TR 7& 2 ROSE MAPK-NF«BE &
Agkstel MMP-1 Z7F9} ECM 9 & f58HA =&,
PDRN-2 ERK 2] &4 E. S7HA71A, 2E# 2 A5 R1AR]
INK$} p389] 48 7+4Al7]E= dual-modulation?] 542
Zk50 24 ROSE % Q% F5e AAE F AUgol B
HATHE3, 34).

3) PI3K-Akt A&

° AR 4 9k Akt 4 3}= &apoptotic A1 Z(<ll: Bel-2 571, 34214
Table 1. PDRN HZA] AX |30 w2 FQ AZAL7|A
AE 73 =o an =g Asdd

Fibroblasts
Keratinocytes
Melanocytes
TNF-a -

Macrophages / Immune cells

Endothelial cells

Collagen <7}, elastin 57}, MMP-1 A, migration 57}

7433} %3], UV-induced apoptosis
Melanogenesis <A

IL-6 74, IL-10 &7}

VEGF %7}, angiogenesis 57}

ERK %7}, CREB Z7}
ZHa, MMP-1 4 NF-kB A, p38 <Al

MITF <A, tyrosinase A
A2A-cAMP-PKA-NF-xB 7|

Akt-HIF-lo A
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%1, M2 AEE e 7]ogTh(13, 35). 53] VEGF &
@ S717F PDRNS| ths &3tz defA o, PI3K-Akt-
HIF-1a Z4Z9}e] AZo] AAE L k7, 36). =3, Akte] &
AL v EZ=g0} 7|5 8K mitochondrial outer membrane
integrity 41, cytochrome ¢ & <A, caspase-3 84 74
S)oll D=2 0)7] wj&(37), PDRNS] A|E =3} HHF
A= Akt B0 TE FAIF o)1 tARl AEr)d 4
77} stk

4) NF-kB 9J#: PDRN &% 7|d2 4]

A2A EA3e} cAMP F712 Q1% PKAS] &40] kB2
HY3LE F3l NF«xB HAF A4S A8 (13, 38). o]l
we} TNF-g, IL-6, IL-1B, COX-2, iNOS, MMP-13} Z-& I3
g Al EZIR] F frAzkEe] d gbo] 4G, 39).
o] 2= PDRNY] #4995 - &3} - Tapoptosis T} ZHk
o] 7]eqg}.

5) 718t A%

YK Aol A= Wnt/B-catenin, TGF-B/Smad, HIF-1a %
¥} PDRNQ| AAto] A7|=|glom, E3] HIF-lo= FIIAY
I AkA 23 A8 BAR BEAdE 7HITK36, 40, 41).

=3 PDRNS ] . A FIE Hols Hog 4y
A 9o, o] melanin /3] master transcription factor!
MITF ¥#3-& ZFAA]A downstream -+ AQ] Tyrosinase,

TRP-1, TRP-29] Hd-& JAFTH?26, 42).

4. PDRN2| ROS 2| 7|H: SAxi7tx[| Ofsh

gk
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M EZ 2Ed 20 A4 mi7jA =, AP 7 L
TolA Fa HAE AA ) d3EA ROS A
nEZ=gol A GA M +F, NADPH
oxidase(NOX)9| &4, E54 Al E7IRI o3l fFE5&=
ROS &7}, ER stress-UPR I ol A2] ROS AJA4F 1@ - A
2ba B7ol| A2 =g ROS F3 To] Ath43, 44).
H ATEL PDRNO| &3F o2 AX U ROS ¥
HaAFlE ALE Bstal QTh33, 45). of2 WEsk 7]
A AF7F SHEAE LUAAT, 2 Zo] AT = Q)
o} AR, NF«xB GAE 53] TNF-09} IL-6 HS TAAl
719 NOX SH=E AAxHA 9159 ROS Aol 7+
3TH(38, 39). B4, PI3K-Akt B4 3}= nEZ=go} o
2] <83t} Fapoptotic 21 F7FE o]oJAH ROS
< Eol WFoZ Zg3it(3s, 37). AAl, PDRNO|] &/

704 & HIF-16-VEGF 715 f538FH 22 AkagFo] 7l

r 2

LD T D%

Axlo] A4kARE 1% ROS HAIAEES 4318 4= STk, 36).
IR % &73ta, PDRN®| Nrf2 A2 E 213 &4 3ok
], NOX isoform= A&HAH 0 Z ZH-s|+=A] 5L ofF F&

SR EERIEE

1) ROS-driven skin aging cascade2} PDRN2] 7| A A

b5 -3}ol| A ROS-driven signaling cascade™= UV =23}
HEZEZo} 75 o Fo2RE AAEH, o= A
ROS F2& 5313 INKS} p38S X33k MAPK 7 22
g3 s 2 3h46). &443E MAPKE= NF«B AlEE
ZZ A A TNF-0, IL-6, COX-2 52 954 m/lEe] &3
< 7M1 (33, 47), 53] TNF-a= NOX12E A3l
ROS A& F7HH o2 jgith4g). o]# g ROSS] S7t
© MMP-1 S JeAA Sl Ak vle] Zals
E£Zsta, A= ECM integrity®] A3le} o5 5 R A=
AEFE o]o] N TH31, 49). FAlol, T2 ROS &3-S
e E T Wld AAS oz M =
3LE 7HE5EtH42, 50). WebA] ROSE IF =39} d5S
Aol mAsE 4 Als JHE 7)Ednh

PDRN-& o] B-3}# Q] ROS-driven cascade?] o2 384l X
AE 5o s 2dsle 545 BRITth PDRNS A2A
£AZ A3}t cAMP-PKA =& F71417]1L, o] S5
NF-kB9| ZAAL 43S SJAg 0 24 TNF-a £H 2 NOX
54 ROS AAS 7FAAIZITK3ES, 39). =8 INKS} p38S
E3G MAPK AZ2 AAE B3l MMP-1 &S @53
ECM 312 93}3t}(32, 34). DA~ A=
MITF, tyrosinase, TRP-1/22] #&-& #|3]j5t] ROS-2JE
AMa P ATE TaATIH42), Akt 21E S7E T3l
EZc ool A 7]hsh= ROS AAHS oAIT(35, 37). O
9] PDRN-2 HIF-10-VEGF A ZE 4% FH3le] Aika
2o A1 e] ROS MBS +53H31(36, 51), FHFH Al E
7H1 IL-10& S7HA 9% 719 ROS F3$& a3t
(11, 52). 23X S Z PDRNS T<=3t free radical scavenger
2715l ROS B3 AE2E 39 GAlA AAHSZ A=
Hah= U ES A 70k ksl - S 2AAE 7] SEih

2) | EZE=go} 7|4k ROS 93A] 714

nEFZcgol= A3 U ROS HAS F8 7|dog &+
3}, UV =&, B¢ Asth A e AAHEA(ETC)S]
ET 3 M A Z&o] AstE o] ROS Aike] 7i&HTh
(53). PDRN o] g rlEZ =g} 7|4k 4ks) ~Ed 2 7

& B¢ oR s, ts9 7|dEs 3 ROS =
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Aeg AAH R dAehs AR deEA Utk

AA, PDRNS Akt AZ29] 4tets S7HA1A nEZE=E
o} ¢HAEE ZXIT35, 54). Akt FA3E= mEZ =g o}
ojuke] 23 HgA-S A3lskal, cytochrome ¢ A|lZZ Ul
&S JAISHY, caspase-3 DA XS Z M apoptosis-
associated ROS &35 A3}, o2 Al ZdoA ERlg
PDRN--%= Akt phosphorylation F]EZZ=g]o} ROS 45
Arshs Fa3 FAVINe R 28313, 24).

E4, PDRN Bax/Bel-2 HI &S ZaAA nlEZE=go}
9 B8 A9E HEE3h3s, 56). Baxd] W HAs)
Bel-29] E7H= A3 APE A8 M EZ T of &4 ¥ ROS
bursts HASh= A4l 7]xdo|H, o]i= PDRN®| &-apoptotic
2 gkshA 2HgS SIHHRIRTH(1, 57).

A, PDRN< hypoxia 714 B3l ETC| 7155 A4
35 f=stth 38 - A4kA mdoA PDRNS VEGF &
AL STHAA mAER B/RE FHAITIHG, 8), At F
o F£o2 g ETCY A F& % ROS AL S a4

AZITKSY). oel e A= PDRNO]

ZHE 7]0l5l= 22129 ROS =3 &

<= AR

*Jzﬂ. O = PDRNE H|EZEg|o} QA3 A3z AbE A
oA, 18] 3 hypoxia 7§12 53l ROS A4ke] A9 <

1 Agdos s dEemde 4 R

STk

v RS o} 7353
sk o |G

l

> s

2 HU

)

3) NOX 7|%F ROS A4 A 714

NOX Al Haves Theh 33 Ao A ROS A=
Tshe Fag vlmEZEg oy At dHo® 5%
(43, 59). 53] NOX+= HAA|ZANA HF A5 ik =~
ol ¥Hg-S w73, melanocytel A= Hebd A3 =
“gollA 2] ROS A7l 7193}, ﬁbroblastoﬂfﬂi‘« 2
G 2B ATl di W0 R ROS ke 3
(60, 61). ©]& g NOX &> TNF-0} IL-1BE Hl%t’& 45
4 Aol E7IRI0N osf &9 DAl 2HEH, 5 2T}t
SZESFE NOX-2|&3 ROS A &3+ 7142 HH48, 62).

PDRN2 NF«B 413 dAE FTAHOE NOX &4
upstream ZAof| #A3ith PDRNoﬂ o3 =%+ NF-«B

A ZaE TNF-o 2dE 2304 AskAIA NOX1/29)
e A= J’%"* NOX isoform= A=3h= F8 Ao &7}
ol JE& ZAAIZITK38, 39). E=3F PDRN-S &4EA Alo)
E7RRIQIIL-109] TdHE Z7A 9% 72 Ass 371
Zlo g2 oF3lA7]H(52), °]&= NOX BAlsle] FQ3dt Z7.

AFAH A5 555 EHHSE Agrhes).
FA7% PDRN©] 74 NOX isoform(NOX1, NOX2,
NOX4 &)l 213 2Hgst==]o gk 233 A= Az
o] A9k, NF-«kB-cytokine-NOX axisE A|5}i= PDRNS] &
= A3 HHE ZAE AFATH13, 33, 64, 65). ©]F
3k 7122 E4-& PDRN©| NOX 714 ROS AAS 49 =
A A A O*Xilﬂf}sliﬁﬂ o7 AF Ak 2By 229 of
<3S Adste T8 IS FATS AAEIT

4) MAPK-MMP-ECM & A 7]#

ROSE INK$} p38S SA1 02 3= MAPK 42155 &43)
311, o] MMP-1-S H£3 TheFst MMPe] M-S 2714
Sl W detd B3E FEF O EHA ECM integrity =
&N e WA AZE FAFTH46, 49). PDRNS ©]
cascade?] T+ A AL FAo 24d3+= EAS BRIt PDRN
2 INK/p38 Z43E AJAIste] MMP HA S F 55t A9l

_\L&L

A5 Apdshs 41034, 66), MMP-13F MMP-39] 23
S AHA o7 ZAaNT)A TIMPS %S Z7HA ECM

degradation®] #8-& A=A K31, 67). o|H3 BEEH =
A2 Fe dgtarle] 723 AAE FAAIH, 2
2 © & ROS-driven photoagingS A#|sl= 523 7|H S

= g3,

5) Melanogenesis 7]%¥F ROS A 713

PDRN<2] melanogenesis <

< o], ROS F4& HaA7E 7%
PDRN2 MITF &g HAFOZH tyrosinase X FHH &
2T WEe a7 olol et melanin 8 I ol
A LAYE= 4k HES-S EOJE]-(% 42). Melanogenesis 3}
A& UV-induced ROS$} 45 FZ 2 A E o]FH, e}
U AR T AREE A A 95 HA Akt 2~
E2E A3 AZITH6S, 69). PDRN | MITF-tyrosinase axis
£ upstream©l| 4] 23O ZH melanogenesis-derived ROS
LS AASE AL, A 2 AR olyel AA] ROS
burden A4l 713l= F83 7] o TH(70).

i)

6) Hypoxia-driven ROS A 717

Aika AEHE ETCY AA A9 &85 AsIAA At
&7 ROS S S8k tlx4<l Wejeld 8]le]
TH53, 58). PDRN2 VEGF 3 < Z7HA712 3PS
ZR8te] 22 ] Ak FFS AAEH, o] M hypoxia©l
7118+ ETC dysfunctions $+}3H6, 36). ©|2]gh 4Abaiet
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oA gt w-¢- 83 7|Ho R, 53] & - 05% Hg ol A
PDRNS] ROS 9A| &35 73lgth71-73). WekA| PDRN
o] angiogenic effects= A|Z w|A|E7o] 413} Y IS
A Hshke AMH 24 Fo02 Hridnh

oz

S FU(future directions)

5.

AA7HA o] A= PDRN S| 4 &3tol] el 444 7]
dro] Al el 53] ROS 24 7KL wl¢- Fa%
AT Yol BTt AAZA EXo] T3t &%
Aol A= phospho-proteomics, transcriptomics 7|HF 2% >
24o] Q3 NOX =4, vEZ=go} 75 H4s

>

N2 B o 5 Aol 3 AAL MAUZ ol
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n.z 2
e 2

AR F2E EdS 7N 2 PDRNS] 4l
S ola AAFQ THAA Al AT
oty E3] /M AFElA FEHoE RAEAY A2A F
|4 719k 714548 cAMP-PKA, MAPK, PI3K-Akt, NF-kB,
MITF, HIF-10Z o]ojA]& 435 5% HEYIARE AFA4
sto gx o|#]3 HAEEo] FFF o E ROS HA A=
G AEEH Hixdd FFH R FEdTE HE AA
3ttt

%331, PDRNS U5 4218 29} HA =273
Ao F ZH3 O ZR ROS-driven cellular damage%
?‘5_,'17 }_z] xH/\g 6’]—‘——5]— 6’]—051; EJ,].—E— E/\]oﬂ ]—
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